Extension of a theorem of Boucheron, Lugosi,
and Massart

Don Hush and Clint Scovel

Computer Research Group, CIC-3
Los Alamos National Laboratory,
Los Alamos, NM, 87545
(dhush@lanl.gov and jcs@lanl.gov)

August 2, 2000

Concentration of measure has become an important tool in the probabilistic
method applied to discrete mathematics, the probabilistic analysis of algorithms,
the analysis of randomized algorithms and machine learning. Techniques for
proving concentration of measure include the use of Martingale difference in-
equalities, Talagrand’s induction technique, and Marton’s use of information
theory( See McDiarmid [6] for a survey). However, recently Ledoux [4] has de-
veloped a new technique based on logarithmic Sobolev inequalities. In recent
work, Boucheron, Lugosi, and Massart [1] used this technique to obtain gen-
eral concentration of measure results which apply to configuration functions and
combinatorial entropies. In this paper we show how the result of Boucheron,
Lugosi, and Massart can be extended to determine concentration of measure for
the Rademacher statistic and the error deviance, two important functions used
in empirical processes and machine learning, (See e.g. Van der Vart and Wellner
[7] and Koltchinskii et. al [3, 2]) whose concentration has been obtained through
application of Martingale difference inequalities [3, 2].
We begin by stating the theorem of Boucheron, Lugosi, and Massart.

Theorem 1 (Boucheron, Lugosi, Massart)

Let X1,...., X, be o set of independent random wvariables. Let X = [[X;
denote the product variable and X % = H#i X denote the product of all terms
except the i-th. Suppose that Z : X — R* is a measurable function such that for
each i there is some measurable function Z; of X ' such that

0<Z-2;<1
and
Y (z-2z)<z.
Define h(u) = (1 +u)log(l +u) —u for u> —1. Then for all € > 0,
P(Z> B(Z) +¢) < e "M at)
and for e < E(Z),

P(Z < E(Z) —¢) < e PO wz)
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This general theorem can be applied to generate concentration theorems for
configuration functions and combinatorial entropies as discussed in [1]. However
many random variables satisfy the assumption

do not satisfy
0<Z-2Z;<1

but instead satisfy
—a<Z-7;<1

for some a > 0. We proceed along the lines of Boucheron et al’s proof of Theorem
1. The proof is presented in detail for a = 1.

Lemma 1 Let X4,...., X, be a set of ind@pendent random variables. Let X =
[1X; denote the product variable and X * = H#i X denote the product of all

terms except the i-th. Suppose that R : X — R is a measurable function such
that for each i there is some measurable function R; of X% such that

|R—R;i| <1

and
> (R-R) <R

Let -
F(\) = log E[e}= T3¢(=M)]

where ¢p(u) = e* — 1 —u Then

F< @(ek -1)+ gef)‘(e)‘ —1)%

Proof. Let S = & and S; = £&. Then it is easy to see that
0<S—-5;<1

and
n—1

D (S-8)<S+ 5

S does not satisfy the conditions of Theorem 1. However, Massart [5] shows that

AE[Se*S] - E[e*]log E[e*] < Y E[e*¢(—A(S — S)))].

Since ¢ is convex, 0 < S — S; <1 and ¢(0) =0
P(=A(S = 5i)) < d(=A)(S = S))
so that

AE[Se*] — E[e*]log E[e*] < ¢(-=\) E[* ) (S - Si)],
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but since 3 (S — 5;) < S + 251 we obtain

n—1

AE[Se*¥] — E[e*]log E[e*®] < ¢(—\)(E[Se*] + 5 E[e*]).
Rearranging we obtain
(= (- N)E[S] < Be*|(log Be*] + "2 6(-).
Partial substitution of S = £&EL into the left hand side gives
(= oA B+ AU sy < p1es)og 515+ L)),
which implies that
(A= G- X)L 56| < E[e*|(log B[] + 26(-) ~ 3)

= E[e]log E[e?ST39(-2)=3],
which implies that
(A — ¢<—A))E[§e*5+%"’<‘”‘%1 < E[r5+80(0 -4 1og FleAST#O(-N-3],

which simplifies to

R

(A = G(-N)El5e* 8 T30V < BAE 500V log BXFTE00N] (1)
Define n
F(\) = log E[e}>t30(=M)],
Then BoAE+20(N)
. B[Eerztiol-
P - R,
E[e¥+30(-N] 2

so that Equation 1 becomes

(A= $(-N)(F + Zd(-X) < F,

which amounts to

A= ¢(-\)F —F < S(1—e),

|3

since A — ¢p(=A) = —d(=A\) =1 — e~
Observe that F(0) = 0 and F(0) = @. Let v = E[R]. Then consider
G = %(e* — 1). Since G satisfies

A= d(-N)G -G =0
and G(0) = 0 and G(0) = 3, if we define A = F' — G then A satisfies
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(A=A -A<Z1-e,
with A(0) = 0 and A(0) = 0. From the definition of ¢ this equation can be

written

(1—eMA-A<Z(1—eM)>.

|3

Further define § = e%‘_l. It is clear that §(0) = 0. Then

et

¢ -\ A LY
= ((1- —A)< —e N
5 (ek_l)z((l e M)A - 4) < Ze
Consequently,
6(N) = 3(0) < S(1—e)
for A > 0 and
5(0) = 6() < Z(e™ — 1)

for A < 0. Therefore, since e* — 1 is positive for A > 0 and negative for A < 0,
A=(-1)5< ge—k(eA —1)?
for all A\. Consequently,
F=G+A< g(a 1)+ ge—*(eA —1)2.
The proof of lemma 1 is finished.

Theorem 2 Let X4,...., X,, be a set of independent random variables. Let X =
[1X; denote the product variable and X = H#i X denote the product of all
terms except the i-th. Suppose that R : X — R is a measurable function such
that for each i there is some measurable function R; of X~ such that

|R—Ri| <1

and
> (R-R) <R
Let h(u) = (1 +u)log(1 +u) —u for u > —1. Then for all e > 0,

E(R)+n

P(R > E(R) +¢) < e~ "3 M)

and for e < E(R) + n,

E(R)+n 3
7Th(7 E(R)+n )

P(R<E(R)—¢)<e
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Proof. For A >0
P(R > E(R) +¢) = P(e* F-F) > ¢3¢),
which by Markov’s inequality gives the bound
PR>E(R) +¢) < w.
In a similar fashion for A < 0
P(R<E(R) - e) = P(e? F7F0) > e739),
which by Markov’s inequality gives the bound
E[e%(R—E(R))]

A
—5¢€

P(R<E(R) - <

Consequently, we proceed to bound
E[e%(R—E(R))]_
To this end,
Ele?(B=E(R)] = ¢=5A=36(-X) . A5 +50(-V)
which by lemma 1 is bounded by
e~ EATFO(=N) B (et =)+ geT (P -1)?

= 30N+ (T (e —1)7—0(-A)
— 3 (1N +nY(N)

where ¢(\) = e e* — 1)2 — ¢(—)). Amusingly,
PN =eMer —1)2 —p(=N) =e M —2eN +1) — (e =1+ )
=er—2+et—e M +l-r=e—1-X=9¢(})

so that
E[e%(R*E(R))] < e3(vtn)o(\)

Consequently, from the bounds 2 and 3, we obtain that
P(R > E(R) +¢) < e 20 (v1m)o(V)
for all A > 0 and
P(R< E(R) —¢) < e z(- e (v4m)8(X)
for all A < 0. The proof of the theorem is finished by showing that

sup(Ae — £p(X)) = Eh(3)

A>0 ¢

€

for € > 0 and c

sup(—Ae — £o(A)) = Eh(

A<0 f

)

for 0 <e<é¢.
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The following theorem can be proved in a similar manner to Theorem 2 and
provides a continuous interpolation between Theorem 1 and Theorem 2.

Theorem 3 Let X1, ...., X,, be a set of independent random variables. Let X =
[1X; denote the product variable and X ~¢ = [1;2; Xj denote the product of all
terms except the i-th. Suppose that R : X — R is a measurable function such
that for each i there is some measurable function R; of X% such that

—OZSR—RZ'SI

and
Y (R-R)<R
with a > 0. Let h(u) = (1 +u)log(l +u) —u for w > —1. Then for all € > 0,

_ E(R)+na

P(R> E(R)+¢) <e ~ T#a M esmTs)

and for ¢ < E(R) + na,

_E®)tna,

P(R<E(R)—¢) <e e M-Emmma)

Applications

Here we describe some functions which satisfy the assumptions of Theorems 2
and 3.

Let R = | 00,7, denote the unnormalized Rademacher statistic where
|h|7 = sup;er |h(f)| with F a class of functions and 0,7 = 1,..,n a vector of

Bernoulli random variables taking values 1 and —1 with p(1) = p(-1) = %
Denote r = Y 0;0,, so that R = |r|z. Define r; = Ei# 00z, to be the sum
without the i-th term. Then since

r=7; + 00,

it is clear that
|R—Ri| <1

by the convexity of the sup operation. The second assumption follows since

1
r:n—lzri

implies that

1
Rgn_lzRi.

Consequently, the theorem shows that

_E®)tn,

P(R>E(R)+¢)<e” = 'mmmm),
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and for € < E(R) +n,

E(R)+n
(2)+ h(

- E(R€)+n)_

P(E(R) >R+¢)<e”

Divide R by n to obtain the Rademacher statistic and call this new variable R
also. Then for the Rademacher statistic R

P(R> E(R) +¢) < o~ 3 (B(R)+1h(grr)
and for e < E(R) + 1,
P(R<E(R)—¢) < o~ 3 (E(R)+)h(— 50877
To make comparison with McDiarmid’s [6] theorem we use the fact that for
t>0
t2
2+t

h(t) >
and for 0 <t <1 .

h(—t) > =%

(1) > 5

These bounds are obtained by applying the bound
z—1
z+1
valid for x = t + 1 > 1 and observing that for the function ¥(t) = h(—t),
$(0) = (0) = 0, and %(t) >1for 0 <t <1. Now,

logz > 2

P(R>E(R) +¢) < o~ 3 (BE(R)+)h(Frr)

c2
HERFDFe |

—_n
2

<e

for e > 0 and
P(E(R)> R+¢) < o~ 3 (E(R)+)h(— 507
2

< 67% E(}czz)+1

for 0 < e < E(R) + 1. In both cases the right hand side is always greater than

n 2
— e

€

which compares unfavorably by a factor of 2 in the exponent to the estimate

e 5
obtained through McDiarmid’s theorem.
For another application consider the signed error deviance defined as follows.
Let 7(f) = ne(f) — >_ 62, (f) and R = supycx7(f), where F is a class of
functions and e(f) = [ f is the integral with respect to some unkown probability
distribution. r is the signed difference between the integral e(f) and its Monte-
Carlo approximation ) d,,(f), and the signed deviance R is the maximum of
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difference over the function class F,. It is important in Machine Learning

to have bounds on R. In a similar manner to the Rademacher statistic, we

define 7;(f) = (n — 1)e(f) — 324 0z;(f) and R; = sup,czri(f). Since r(f) =
ri(f) + e(f) — 65, (f) it is clear that

and

R < R; + sup (e(f) _6zz(f)) <1
feF

Ri < R+ sup (0:;(f) —e(f)) <1—e
FEF

where the approximation error

= inf
ex fuelfe(f)

is the best error rate one can obtain with the class of functions F. If we let
a =1—e*, and note that

1
r:n—lzri’

R and R; satisfy the assumptions of Theorem 3

and

and

—OéSR—RZ’SI

> (R-R) <R

so the concentration bounds apply. For the error deviance, R is instead

defined as R = sup ¢ |r(f)|. Similar definitions for R; show that the conditions
of Theorem 2 are satisfied.
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